SUGGESTED EXPERIMENTS IN
SCHOOL MATHEMATICS

J. N. KAPUR

1 Patterns in Numbers

Experimentﬁ : 101 to 110

Expériment_lﬂl. Patterns in Rows and Colamns,

Let the teacher write all the numbers from 1 to 100 on the
blackboarﬁ and asic the children to find all the patterns they find
there : .. _

r 2 3 4 5 6 7. 8 9 1o
i1 12 13 14 15 18 17 18 19 20
20 022 23 24 25 26 27 28 29 30

“31 32 33 34 35 36 37 38 39 40
41 427 43 44 45 46 47 4B 49 50
51 52 53 54 55 56 57 38 59 60
61 62 63 64 65 66 67 68 69 70
76072 73 0 15 1% 1T 18 79 80
81 82 8 84 85 8 87 88 89 90
91 92 93 94 95 96 97 98 99 100

Some pa'ttems which they may discover are :

(;) "All nuribers in the first column end, with 1, all nnmbcrs i)
the second column end with 2 and so on till ali nambers:
in the tenth column end with 0.



(i) If we leave out the last column, all numbers in the second
row begin with 1, all numbers in the third row begin with 2
and so on till all numbers in the teath row begin with 9.

(iii} Numbers in each row increase by unity.

(i) Numbers in each column increase by ten.

After this, children can be asked questions like the following :

(@) Suppose the table of numbers is continued beyound 100, in
which columns and rows will the following numbers occur :
3456, 2347, 4589, 3250 7.

(b) What are the sums of numbers in various rows and
columns ? Do you see any patterns there ?

Experiment 102. Patterns in Diagonals.

(/) Successive numbers in dlagonais shown by dotted lines
differ by 9. The numbers. increase successively by 9 if we
go down a diagonal and they decrease successively by 9 if
we go up a diagonal. A sequence of numbers in which num-
bers increase or decrease by a constant number is called an
-arithmetic progression. Children can give other gxamples
e.g., numbers in each row form an arithmetic progression
with common difference ] and numbers in each column
form an A.P. with common difference [0. If we consider
numbers in- first two columns and add the numbers along
the dotted lines, they form an A.P. with common difference
20. Children can also find A.P.’s here with common dif-
ference 30 or 40 or 50 etc. The sequence of sums of num-
bers in rows (or columns) also form an A.P.

() Successive numbers in diagonals shown by full lines differ
by 11. The numbers increase successively by 11 as we go

-down a diaronal and they decrease successwely by 11 as
we go up a diagonal.

(i) If we leave out the last column, the sum of the digits of
numbers along a dotted diagonal is the same. However if
when the sum of digits exceeds 9, we again take the sum of
digits, we have not even to leave the last columsn.

(iv) If we leave out the last column, the sums of digits. of num-

bers along a full-line diagonal form an A.P. with common
difference 2.

{v) Children can form other diagonals like those shown by dotted
lines and study their patterns in the same way as above :
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(vi) Children can be asked questions like the following :
(a) Form diagonals in which the difference is 29, 31, 41 ete.
(b) Find the sum of all numbers in each diagonal.

tperiment 103. Other Similar Patierns.
(i) Let the children find similar patterns in rows, columns and
diagonals of the following two tables.
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+ (if) Lét the children compare the pajferns in diagonals of all the
threc ‘tables given so far, The detted diagonals form
“A.P.’s with common difference 9, § and 6 respectively.
The full-line diagonals form A.B.'5 with cormon difference
11, 7and 8 respectively. If they:form similar dotted and
full-line diagonais in similar table with 4, 5, 8 or 4
coluitns, what common differences do they expect ?

"It is obvious that the above tables can give a really rich variety
of pattens and the patterns we have given a}"m?g» form just a sample.
The'children may be encouraged to find more patterns and to try fo
understand the reasons for the same. s

Expeﬁmexit 104, Patterns in Multiples of T;vé, Five mgi Ten.
© {4) Let thé children write all numbsps 110 100 as in the first

. table and enclose multiples of 2 in full girsles?, multiples of

5 in dotted circles and multiples of 10 in full squares.

. Different coloured circles may also be uspd for this purpose.

: k For conveniencs, in the following Sgures, mhi@edrawn closed oval
“eurves {;{ﬁgg@) insend of circles and rectangles insiead of aquares,

s

1 @& 3 @OE@E 7 9 [Cioy
i d» 3 @@ 5 G das |9
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Let the children note that :—
. (i) all multiples of 2 [denoted by M(2)] occur in even-num-
bered columns.
{#) all multiples of 5 [denoted by M(3)] occur in columns
whose numbers are multiples of 5.

(ifi) all multiples of 10 (denoted by M(10)] occur in columns
whose number is 10.

(v} if one number in a column is included, each number in that
column is included.
Experiment 105. Patterns in Multiples of Three and Nine.

In the following figure, multiples of 3 are enclosed in full circles
and multiples of 9 are enclosed in dotted circles.
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Let the children note that :

(f) Multiples of 3 [denoted by M(3)] show a diagonal patterns
and multiples occur in every column.

(if) Multiples of 9 [denoted by M(9)] also show a diagonal
pattern and multiples occur in every column.

(iii} The number of multiples of 3 in successive rows are 3,3,
4,3,3,4,3,3,4,...... The same pattern holds for multi-
ples of 3 in successive columns. How many multiples of 3
will be in the 20th row, 21st row, 22nd row ?

(i) The number of multiples of 9 in successive rows are 1, 1,
1,1,1,1,1,2,1,. What will be the pattern if we continue
the numbers beyond 100 ?

(¥) In every row (or column) there are two noh-multiples of 3
between every two multiples of 3.

Experiment 106. Patterns in Multiples of Four and Eight.

In the following figure, multiples of 4 are enclosed in full circles
and multiples of 8 are enclosed in dotted circies.
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Let the children note that :

() Multiples of 4 and 8 show diagonal pattern, but all columns
are not represented.

(1) The numbers of muitiples of 4 in successive rows are 2,3,
2,323,23,.. and the numbers of multipies of 4 in
successive columns are 6, 5, 0, 5, 0,50,50,5,

(ifi) The numbers of multiples of § in successive rows are |, 1,
1,2,1,1,1,2, 1, §,......
The numbers of multiples of 8 ip successive rows are 0, 2,
0,2,0,3,0,30,2,.....

Lxperiment 107. Patterns in Multiples of Six and Seven.

In the following figure, multiples-of 6 are enclosed in full
circles and multiples of 7 are enclosed in dotted circles.
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Let the children note that :

(f) Multiples of 6 show a diagonal pattern, but.all columns
are not. represented.

(ii) Multiples of 7 show a diagonal pattern, but all columns
are represented. '

Experiment 108. Summary of Patterns in Multiples,

Let the children summarise the' results of the last four eXperi-
ments as follows :
{®) M(2), M(5), M(10) show column patterns. Some columns
" are represented completely, others are not represented
at all. . ‘
(6) M(3), M(T), M(9) show diagonal pattetn and all columns
are represented.
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M4}, M(6), M(8) show diagonal patterns and all columns
are not represented.

‘What is special about these three different cases 7 We note
that :

2, 5, 10 are factors of 10

3,7,9 are not factors of 10, nor ihey have a faclor
common with 10. These numbers are said to be prime
to 10.

4, 6, 8 are not factors of 10, but they have a factor
commen with 10

" What patterns do the children expect” when they take multiples
of 11or 12 or 13 etc.?

@

(i)

Let the children circle M{(2} and M(3) in different colours
and note that M({6) are circled in bothecolours, Similarly
let them circle M{2), M(3} and M(4) with different colours
and note that M{12) are circled in all three colours.
What conclusion do they draw ?

Instead of drawing circles, the children may write the
numbers in squares and shade them as in the following
figure which shows muitiples of 1§ and 12 and shows the
diagonal patterns.

square from which squares representing M(2), M(3), etc.
have been cut out. When a reader is placed above the com-
Plete 10x 10 square, it shows the correspoading multiples.
When readers of M(2), M(3) are placed simultaneously,
M(6) are shown. The original 10 x 10 square with numbers
1 to 100 may be made on a flannel graph [see Chapter 14].

Expeument 109. Patterns in Multiples with Nine or Less

Columns,

We | now see whether a similar pattern holds when we arrange
numbers in 9 or less columns.
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(i} An alternative way is to make ‘*window-readers’ for M(2},

M@),

M(4)......

LSM0Y, ML, M) ete.
card board pieces of the same size as the abave big

These are
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It can be verified that
&
(ii)

multiples of 2, 3, 6 form column patterns. ‘

multiples of 5 show a diagonal pattern in which all

(iif)

‘columns are represented.

multiples of 4 show a diagonal pattern in which all columns
are not represented.



In the same way let the children arrange numbers in 7, 8, 9, 11,

| 2
hold viz.
()
(i)
(iif)

... columns and note that the above results continue to

multiple of factors of the number of columns show columa
pattern, :

multiple of those numbers which are prime to the number
of columns show diagonal patterns in which all columns
are represented.

multiple of ather numbers show diagonal patterns in which
all columns are not represented,

Experiment 116. Patterns in Primes

Q)

(i)

Let the children find all the prime numbers less than 500
(say). These are:

2,3,5 7, 11,13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
39, 61, 67, 71, 73,79, 83, 89, 97, 181, 103, 107, 109, 113,
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,
191, 193, 197, 199, 211, 223,227, 229, 233, 239, 241, 251,
257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,
401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463,
467, 479, 487, 491, 499, '

Let the children arrange these in 10% 10, 15x 15, 20x 20,
25%235, 30x30, squares and mark with dots the prime
numbers therein and try to find if there are any patterns.
They may note that some columns do not contain any
prime numbers and some contain only one. What is the
reason ? Let them also count the number of primes in
each row.

JENVEN E, S

.~

(iff) Let the children form the foliowing table :

| Number of primes less than N

N

30

100 |

150

200

250

7300




There is a pattern here, though the children may find it
difficolt to find it, since it involves logarithmic function.

() Let the children find the number of twin primes i’e .
prime pairs differing by 2 only e.g., (3,5), (5, 7). (11, 13},
{17, 19), (29, 31) etc. below any given number.

{¢y Let the children guess how many prime numbers are there
in all 2nd how many twin primes there are in ail. It has
been proved that the number of prime numbers is infinite,
Ttis also believed that the number of twin primes is also
infivite, though the result has not been proved so far.
The children may be interested to know that the largest
known prime number is 242 —1 which has 1332 digits and
the largest known twin primes are:

140,737,488,353,699 and 140,737,488,353,701.
The children may wonder how it has been possible to
find these. The secret is in the clectronic computer and
the mind of man.

{vi} Let the children continue the spiral pattern shown on. the
next page.

Do the children find any patterns here ? Do they find that
‘some diagonals confain even numbers only and some contain odd
numbers only ?

In similar 10x 10, 15x 15, 2020, 25 %25 splral patterns, let
the children mark the primes with dots and see what patterns they
get. : ‘
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Patterns in Squares, Cubes
and other Pow_ers of
Natural Numbers

Experiment 111.

Number

b bk ot et ot P etk
SIAN A R W — OO S0 1O LN R IR e

Preparation of Tables of Squares and Cubes

Experiments : 111 to 120

Let the children prepare the following table :

Square

16
25
36
49
64
81
160
121
144
169
196
225
256
239

Cubc

27
64
125
216
433
512
729
1000
1331
1728
2197
2744
3375
4096
4913

|
|

Number

13

20
21
22
23
24
25
26
27
28
29
30
32
33
34

Square

361
400
441
484
525
576
625
676
729
784
841
900
941
1024
1089
1156

Cube

3832
6859
8000
0261
10648
12167
13824
15625
17576
19683
21952
24389
27000
29171
32768
35937 ;
39304

Square

1225
1296
1369
1444
1521
1600
1681
1784
1849
1936
2025
2116
2209
2304
2401
2500

o
)
=
@]

42875
46636
50653
54872
59319
64000
68921
749238
79507
85184
91125
97336
103823
110592
117649
125000

The children can form teams for this purpose and the whole class
can combine together to prepare a correct table of squares and cubes
of all numbers upto 100. There can be a competition as to who
makes the least number of mistakes.

Experiment 112. Patterns in Squares and Cubes of odd and

even numbers

There are two types of natural numbers viz. even and odd.
Even numbers are numbers like 2, 4, 6, 8,...which are divisible by 2.
Odd numbers are those like 1, 3, 3, 7,...which are not divisible by 2.
Let the children note that

)

(ff).
(i)
{iv)

Squares of even numbers are always even and further
squares of even numbers are multiples of 4 (every even
number has 2 as a factor, therefore its square has 4 asa
factor)

squares of odd numbers are always odd.

cubes of even numbers are even and are multiples of eight.
cubies of odd numbers are always odd.

Experiment 113. Patterns in Powers of Numbers of three

On

numbers,

(a)
G}
(@
(i)

(i)
.(ffi)

Classes Obtained by Dividing Numbers by
_ three,
dividing a natural number by 3, we get three types of

Numbers of the first kind which give 0 as remainder eg.
3,69,12,15...........

These are of the form 3a where n is any natural number.
numbers of the second kind which give | as remainder e.g
4,7, 10, 13, 16,.......

These are of the form 3n+1,

numbers of the third kind which give 2 as remainder e.g.
5,811, 14, 17,......

These are of the form 3x+2,

The children easily find that :

squares of numbers of the first kind are numbers of the
first kind and are multiples of 9 [ (3n)? =9p2 ]

squares of numbers of the second kind are numbers of the
second kind [ (3n4-17=3 (32 4+-20)+1 |

squares of numbers of the third kind are numbers of the
second kind [ (3n--2y=3 (3~ 4n=1)+1 ]



() no number of the third kind can be a square number.

¢v} the cube of a number of the first kind is 2 number of the
first kind and is a multiple of 27.
[ (3Peed x 9132270 ]

{vi} thecube of a number of the second kind is a number of
the second kind. .
[(GnH1p=27 2100+ 90+ 1=3 (90 + 92+ 3 4) 4+ 1 )

(vif) the cube of a number of the third kind is a number of the
third kind.
{3n42) =0T 4 S4n*+-36n+-8= 3(§n3+18n3+12n+2)+ 2]
The children can see these resuits more easily by arranging
numbers as below :
First Kind : 4 Second Kind 1 B Third Kind : C
3 : 1 2
6 4 5
9 7 ' 8
12 HY 11
15 13 14
18 16 17
21 19 20
24 : 22 23
21 25 . 26
30 28 ‘ 29
33 31 . - 32

and then seeing that the square of any nomber in column A isin A,
the square of any number in column B is in B, the square of any
number in column Cis in B, the cube of any number in column A is
in A, the cube of any number of column B is in B and the cebe of any
qurber it column C s in C. Symbolically we can write
A=A BMB, Ci=B, A®=A, B*=B, (3=C
similarly;the children can show that:
Al=A, Bi=B, C*=B, A=A, B’:=B, (*=C
They can now deduce the general resuits :
(i) Every power of a number in A isin A
(i) Every power of a number in Bis in B .
(i) Odd powers of a numbet in C are in C and even powers of
3 number in C are in B.

Experiment 114, Patterns in Powers of Numbers of Four
Classes Obtained by Dividing Numbers by
Four,
In the same way children can divid= numbers into four classes.
viz. these which leave remainders 0, !, 2, 3 respectively on beip
divided by 4, so that we get the following classes :

D E F G
4 1 2 3
3 5 6 7
12 g 10 11
16 13 14 15
20 17 18 19
24 21 22 23
28 25 26 27

The children can now prove the results

D?=D, F:=E, F=D, G=
D¥=D, E’= E, F=D, G¥= G
Di=D, E*=E, F'=D, G'=E

..................

and lhen obtam the general results :
(i) all powers of numbers in class D are in D
(if) all powers of numbers in class E are in £
{iii) all powers of numbers in class F are in D
(iv) even powers of number in G are in E and odd powers of
numbers in G are in G.

Experiment 115. Patterns in Powers of Numbers of Five
Classes Obtained by Dividing Numbers by

Five,
. By dividing numbers by 5, we get the following classes :
P Q R s T
5 1 2 3 4
10 6 7 8 9
15 11 12 13 4
20 16 17 18 19
25 21 2 23 24
30 26 27 28 29

35 k} | 32 33 34



 The children can show that

Pi=P, Q'=Q, R:=T, S!=T, T:=Q
Ps=P, Q®=Q, R%=S, $'=R, T=T
PP, Qi=Q, Ri=Q, $'=Q, Ti=Q
Pi=P, Q*=Q,.R*=R, $=S§, Ti=T

Thus
(@) all powers of numbers in P belong to P
(i1} 3l powers of numbers in Q belong to Q

(#i} sugcessive powers of numbersin Rbelongto R, T, 8, Q,

{i¥) successive powers of numbers in T belong to T, Q, T,

Q, eenen
() First, ﬁfth nintl, thlrteenth
any column belong to that cohzmn.

....powers of numbers in

Experiment 116, Patterns in Unit Digits of Powers of '

Numbers
Children can easily prepare the following table :
Unit digit in number g 1 2 3 4 5 6 7T 8 B
Unit digit in square ¢ 1 4 % 6 5 86 9 4 1
Unit digit in cube O 1 8 7 4 5 6 3 2 9
Unit digitinfourthpower 0 ' 6 1 6 5 6 1 6 1
Unit digit in fifth power O 1 2 3 4 5 6 7 8 9

The children can easily deduce the following results :

{f} square or sixth.power or tenth power of no number ete,
can end with 2, 3, 7, 8

(#} fourth power or eighth power or twelfth power ete. of no
number can end with 2, 3,4, 7, 8,9

{{if} unit digit of 5th power, 9th power and 13th power of a
number is the same as the unit digit of the original number.

{iv} If we know the unit digit of the third power or of 5th power
or of 7th power, we can tell the unit digit of the original
number uniquely.

{¥) If unit digit of a perfect square is 1, the unit digit of the
eriginal number may be 1or9, if the unit digit of the
square is 4, the nuwiber’s unit digit may be 2 or § and so on.

(v} 1f the unit digit of a perfect fourth power is I, the uni
digit in the original number may be L or 3 or 7or 9 and if |
the unit digit in the perfect fourth power is 6, the unit digit
in the original number is 2, 4, 6 or &.

Experiment 117. Patterns in Number of Digits in Powers of

Numbers
Children can prepare the following table :
Number of digits in the number: | 2 3 4 5

34 56 18 9,10
10,11,12 13,14,15.

Number of digits in its square: 1,2
Number of digits in its cube : 1,23 4,5,6 7,89
Number of digitsin its fourth
power 1,2,3, 5.6, 10,11, 13,14 17,18,
‘ 4 78 12 1516 1920

The children may be able to see the pattern that if an m digit
number is raised to power #, the largest number of digits, in the nth

“power of ar m digit number is mx# and the Jeast number is {m—n

+1.

The children can now answer questions like the following 1

If the square of 2 number consists of 17 (or 18 or 19 or 3G)
digits, how many digits does the number have ?

Thus if we know the number of digits in a given power ofa
number, can we find the number of digits in the number uniquely ?

Experiment 118. Expressing Numbers as Sums of Four or
Less Square Numbers

Ask the children to express each number as the sum of four or

fess square numbers in as many ways as fhey can. 1Let ihein collec-

tively prepare the foljowing table : :

1==12 2=1%4 12

3a=124-10 412 4=124 12 410 f 122t
5=22412 620113412

G2 415412 7204 134 1R 12
8220 e 20420 [ 32
10=22 422 1 24 2= 32 4 |2 1=3%118 412
1232 12 12 12 2R 4004 22 1323820281 22 1 204 12

15=324. 201212
17=4%4 1230102028

14::324.22.1. ]2
16224222 4 224 202
}8m39+32=42+12—}-1‘3=3‘34 ,% 22+]2



19=32} 32| | 2=42} 1212 |2
21 =422 12=38422 224 D2
23=32-13%4 322412
L 25=52=4%4-2%1 D2 13—4%1 32
26=5%14-12==321 324 2210242 32 |2
27=52+12+12=3a+32+32242+32+13+12
28=5"-1124 124 19=324-324 331 12=42 .22 -2 1 D2
20=52422=421 321 22 30=524-22412=421 324221 ]2
31=524+224 124 |2==324-321. 3222
3222421 42
33=44 42 12=424.32 | 221 2252 281 92
C34=4%4-4% 4 121 12=42 1 32 32=52 D21 73| |2
35=524 324 12=42 432432012
36=62332+32+3’+32=52+3’+13+12=4’—i—42—|—22
37=624 12=504.22..2% | D342 L 424 98¢ |2
38=624-124 12=521 32425 —42.4 324 324 >2
I0=624 174154 12=52 .32 22 12
40=62-4- 22=42} 42 .32 172
41=624-224-12=42 1 42 1 32—524 42
47—62—|~22-+-124—12—4’4—42-{—32—{»12—52-!-42-[—12~52—{—32—|~2“—{-22
43 534374 32=42.4 321324 3252 42 (2 ]2
52+32+32+12_62+22+22
45 52+42__{ 22_62+22+22+12_62+32
46=52 142127 | 122624 32112
472524324321 0262 1 324 2.1 |2
48=634-22 1 2210240 42 1 42
49=T2=624-32 L 22=qB 1 42 | 421 ]2 52 42 20 D2
SO=T72 4 12=624 324 224 | 2=52 58524421323 424 32 32
Let the children try to extend the above table up to 100 and let
them verify the number of ways for expressing the given number as
sum of four or less squares :

For 56, 96

For 64, 71, 80, 88

For 51, 53, 55, 59, 60, 62, 72, 79, 92, 95
For. 57, 61, 63, 65, 67, 68, 69, 77, 78, 83, 87,

20==41428=324 324 24 |2
22=43420 124 122324324 22
24=42+204. 20

42+42 ' 32+29

One way
Two ways
Three ways

94 :  Four ways
For 50, 52, 54, 58, 70, 73, 74, 75, 76, 84, 85,

89, 91 93. Five ways
For. .66, 81, 97, 99 Six ways

For 82, 98, 100 Seven ways
For none + _Eight ways
For 90 Nine ways

Experiment 119. The Power of Mathematics

The children may be asked to estimate how much time it would
take to verify whether a number like 1426753489345 can be expressed
as the sum of four or less square numbers and how much time it would
take to verify the result for all numbers. The children may be told
that when they grow up they would be able to prove the resuit for all
numbers they can think of, in less than one hour,

Experiment 120. Pythagorean Triplets
From the table of square numbers, children may be asked to ﬁnd
three square numbers such that one of these is the sum of the ofher two.
They should be able to find the following Pythagorean triplets :
(3. 4, 5), (6, 8, 10), (9, 12, 15), (12, 16, 20), (15, 20, 25),
(18, 24 303, (21, 28, 35), (24, 32, 40), (27, 36, 45), (30, 40, 50),
(5,12, 13), (10, 24, 26), (15, 36,39), (7, 24, 25), (14, 48, 50),
(8. 15, 17, (16, 30, 34)

They will also find some more triplets. Children may also find
three square numbers such that the sum of two is one more or less
than the third. Some such triplets are :

(1,1, 1), 2,2, 3) (5.5, 7, (12, 12, 17), (29, 29, 41),

(70, 70, 99) etc.

(7, 12, 13), (8,9, 12), (11, 13, 17), (10, 15, 18), {9, 19, 21),

(14, 17, 22), (13, 19, 23), (17, 21, 27) etc.



More Patternsin Squares, Cubes
and Higher Powers of
3 Natural Numbers

Esperiments : 121 to 130

Experiment 121. Finding Truth Set of [J'=2A" in N
Let the children try to find truth set of
12 = 270

For this purpose, they may use the table of square numbers they
have themseives prepared or they may be given a printed or ¢yclo-
styled table giving squares of all numbers, say from 1 to 100 or 1006,
The object is to find a pait of two square numbers such that one
square number is double of the other. 1 is a square number, but its
double 2 is not ; 4 is a square number but its double 8 is not, Yisa
square pumber but its double 18 is not and so on. The children wili
find that very often they get a square namber very nearly the double
of another square number e.g.

F=2x 2041
102==2 x 7842
17B=2 x12°+1

2422 1P -2
412=2 X292 —1
582=2 41242
9982 % 700+

The children will not get a square number which is double of
anothier square number, however far they continue this search. The

~

children may accept the challenge of finding such a pair of square
numbers and for this purpose, they may find squares of larger and
larger numbers and get a good deal of well-motivated practice in
muitiplication. Just as chemists of the middle ages did not succeed
in getting a substance which could convert every material into gold,
though in this process they learnt a great deal of chemistry; in the
same wéy the children will get a great deal of practice in multiplica-
tion, though they will not be able to find the pair of square numbers
they were searching for.

Experiment 122. A simple proof that Ot=2/A* has no solu-
tion in N
A simple proof can now be given to the children to show that
they will never be able to find natural numbers such that the square
of one is double that of the other. For this, let them recall the results
they have verified earlier viz.

(i) every natural number is either even or odd

(i) the square of even number is even and is a multiple of 4

(iii) the square of every odd number is odd.
Now there are only four possibilities viz.

(@) number in (7] is odd, number in A is odd

(b) number in [J is odd, number in A is even

(¢) number in [] is even, number in A is odd

(d) number in [J is even, number in A is even

We shall rule out each of these possibilities one by one and thus
show that it is not possible to find numbers in [J and /\ so that
]2 == 2%
is true

(@) In this casé, 1..H.S. is odd and R.H.S. is even. They can-
not be equal.

(b) In this case also L.H.S. is odd and R.H.S. is even. They
cannot be equal.

(¢) In this case L.H.S. contains 4 as a factor, while R.H.S.
contains only 2 as a factor. They cannot be equal.

(d) Here number in [J and /\ are both even. We divide these
both by 2. At least one of the numbers may become odd
by this process. If this does not happen, we continue to
divide by 2, till at least one of the pumbers in [Jor A
becomes odd, so that this case is also reduced to (a) or (b)

Av £N A ln thaie alaa etlad At



Thus in each of the four cases LH.S. cannot be equal to R.H.S.
but these are the only four cases. Therefore [1° can never be equaly
to 2% In this way the ¢hildren can see the power of mathematics.
What could not be established in millions of years by trial and error
<an be established by using logic and mathematics in a matter of
rrlxiﬁates and the proof can be understood by students of elementary
classes.

Experiment 123. Finding Truth Sct of [12=3/?

Next et the children try to find the solutions of
) DE s 3&2
i.eQ: in the table of squares, they have to find one square pumber
which is three times another square number. They will not succeed '
though they will get very near success e.g, ’
T2=3 x 4541
268 =3 x 158 +1
T12=3x 412 -2

In this case there are nine possibilities and zll of these have to
be ruled out.  If there are any common factors between pumbers in

[ and A, these can be cancelled out so that we can assume that they
‘have no common factors :

{a) number in [] isof type A and pumber in A is of type A.
This is not possible since in that case these will have a
common factor,
(8) number in [ is of type A and number in A is of type B.
This is not possible since L.H.S. would be of type A and
would contain 9 as a factor, R.H.S. would also beof type A,
but would contain only 3 as a factor.
f¢} number in [} is of type A and numberin A isof type C.
This is also not possible since L.H.S. would be of type A
and would contain 9 as a factor while the R.H.S. would also
be of type A but could contain only 3 as & factor.
{d, e, /) number in [ is of type B and number in A is of type A
or BorC.
In each of these cases L.H.$. would be of tyre Band R.H.S.
would be of type A and this is not possible,
(g, h, i) number in [J is of type C and number in A is of type A or
‘Bor C. Ineach of these cases L.H.S. is of type Brud RH.S.
would be of type A and this is not possible.

Thus all the nine cases are ruled out and we cannot find natural
numbers to satisfy

Dﬂ — 3 Aﬂ.
Experiment 124. Findiog Truth Set of 2=4 A%
Next let the children try to find solutions of
=4 Ae
They will be happily surprised to find that here they can find

any numbers of solutions e.g., (2, 1), (4,2), (6 3), (8, 4), (10, 5} etc.
The number of solutions is infinite.

Experiment 125. Finding Truth Set of 2=5/¢
Next let the children try to find solution of
Dz J—— SAz
and this time they fail, though they are very near successes €.g.,
9t—5%x 4241, 112=5x52—4
Again the proof of finding the impossibility of finding a solution
proceeds in the same way. There are twenty-five cases to be ruled
out. However it is easily seen that in [1*=5A% the R.H.S. is always

" of type P and number in [} cannot be of type Q or RorSor T.

Thus only five cases remain to be ruled out. Numbers in [ and A
cannot be both of type P for we can easily cancel out common factor
of 5 or multiples of 5. In other four cases 2 will contain 25 as a
factor, while 5 A% would contain only 5 as a factor.

Experiment 126. Finding Truth Set of [2=k/\%
In the same way children will find that
Dz=6A2, DE:—,AZ, D?._:SAZ
have no solution while [)2=9A? has an infinite number of solutions.
They will easily be able to guess that 2=k A? has no solution if &
is itself not a square number and has an infinite number of solutions
if k is a square number.

Experiment 127. Finding Truth set of [#=2A%

Again let the children try to find solutions of [12=2A%
Here they have to use their own tables of cubes of numbers or
they can be given printed or cyclostyled copies of tables of cubes.
They again fail to find any solutions and again they can give the
proof of the impessibility by examining the four cases. Number in
{7 cannot be odd, since cube of an odd number is edd and the R.H.S.



1s cven. If number in [77 35 even and number in A\ is odd, the
L.H.S. cvould contain § asa factor, while the R.H.8 would contain
only 2 as a factor. If nwmbers in [J and A are both even, we can
go on dividing by 2 or power of 2 till one of them becomes odd so
that this case reduces to one of the three earlier cases.

Experiment 128, Finding Truth Set of [B=kAS3

Proceeding in this way, the children will be able to see that
%=k A® has no eolution wnless & is a perfect cube and in that case
it has an infinitv of solubions, Generalising further, they will find
that [Tkt will have no solution unless & is a perfect fourth
power and in that case it has an infinity of selutions and so on and
that T"=k/" will have no solutions, unless % is a perfect nth
power and in that case it has an infinity of solutions.

Experiment 129, Yutroducing Sguare Roots, Cube Roots etc.

Children may be introduced to the idea of square root, cube root,
fourth root ete. What is the number whose square is 4 ? 2 is called
the square root of 4.

What is the number whose cube is 27?2 3 is called the cube
root of 27.

What is the number whose fourth power is 64 T 4 is called the
faurth roat of 64.

‘What is the number whose square is 27

The square of 1 is [ and the square of 2is 4. There is no
natural number whose square is 2. But there may be a fraction
whose square is 2. A fraction is ratio of two natural numbers
i.e. it may be possible that

73‘5-32 or [B=2A%

but we have already seen that this has no solution in natural
numbers. Thus there is no Traction whose square is 2. Similarly
there is no natural number or fraction whose square is 3 of 5 or

6 or 7 etc. and there is no natural number or fraction whose cube
is 3ordorSoréor 7.

Experiment 130. Introducing Irrational Numbers

The following numbers are called natural numbers :
1,2,3,4,5,6, 7,8, ... .

The following numbers are called integers :
................ o =4 =3, =2, =1, 0, 1,2, 3,4 5 o
Any number which is the ratio of two integers with depominator
not equal to 0, is called a rational number. We have seen that
the square root of 2 is not a rational number. Such a number
is called an irrational number. Thus .
(a) the square root of any number which is not a perfect
square number is an irrational number. '
() the cube toot of any number which is not a perfect cube is
an irrational number.
(¢) the fourth toot of any number which is not a perfect
fourth power is an irrational number,

and so on.



4, Patterns in Division Process

Experiments: 131 to 135

Experiment 13]. Patterns in Quotients
Let the children divide N'=1,000,000,000,000,000,000, ...by
2.3,4,5,6,7,8,9,10,11,......... ,and note what they got :
N 2==5000000000000600............
N+ 3==3333333333333333..........0.
N - 4==2500000000000000............

N+ 5==2000000000000000............
N-=- 6= 1666666666666666...... ...
N+ 7==1428571428571428............
N+ B==1250000000000000............
N O=T1IHIITEITE IR e,
N2 10==10000C0000000000............
N 11==9090909090908090............
N-+12==8333333333333333...........
N-13=+7692307692307692...00 1,

Let the children note the patterns :
{a} When they divide by 2,4,5,8, 10,16, 20,...... ..,
begin getting zeros after a certain stage.

they

(5) When they divide by other numbers, they find that after a
certain stage digits begin to recur. In the case of division by
3 or 9, the same digit cccurs again and again. In the case of
division by 6 or 12, recurrence begins with the second digit-
In other cases a group of digits recur. Thus in division by 7,
the group of digits 142857 occurs again and again.

(¢) The number of digits in the recurring group is always
less than the divisor.

The children may also notice that the divisors in (@) have only
2 and 5 as factors f.e. they are all of the form 2™ 5" where m and »
may be 0,1,2,3,......... They may also note that 2 and 5 are
factors of 10 which is the base of our system.

The explanation for {a) is easy to see. The number 1,000,000...
has only powers of 2 and powers of 5 as factors. The process of
division can therefore start giving zeros after a certain stage only
if the divisor is a number with only 2 and 5 or their powers as
factors. The process of division also gives an explanation for {¢).
When the children divide by a given number, the number of
different remainders cannot be more than the number itself. Thus
when they divide by 13, the only possible remainders are: 1, 2, 3,
4,5,6,7,8,9,10, 11 and 12. If the remainder at any stage is 0,
they begin getting all zeros after that stage. In other cases since
there is only a finite number of different possible remainders, the
same remainder must occur after a certain stage and as such
recurrence must start occuring at that stage. The number of digits
in the recurring group thus has to be less than the divisor.

Experiment 132. Patterns in Decimal Quotients.

The children who know decimals can get the patterns as foliows :
1 =+ 2 = -5000000000000009.........
1 -+ 3 = -3333333333333333.........
*2500000000000009.........
+2000000000000000.........
16666666666066666.........
*1428571428571428.........
+1250000000000000.........
HUSEOR R ADNNDDTEY PPN
+1000000000000000.........
,0909090909090909.........
*0769230769230769.........
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They find that either the process terminates or there is recur-
rence and the process terminates only when the divisor is product
of powers of 2 and 5 only.

Experiment 133. Patterns in Decimal Representation of
Rational Numbers

Next let the children find decimal representation for any

rational number f.c.a number which is the zatio of two integers but
for which denominaior is not zero. Thus

%—;EB'DS 000000000000 ...,

o= 33846923076923076923........
They will again find that if the only factors of the denominator
are powers of 2 and 5, the process terminates. In all other cases
there is recurrence.  They can also give reasens for the same. _
The converse of the above statement is also true i.e. every termi-
nating or recurring decimal can he expressed as a rational number e.g.
. 8,27
For a recurring decimal, the demonsiration below is meant
only for the brighter children :
3-3456456456....c..u...
=33 -+--0456 40000456 4--0000000456 4 ... reeee
=33.LP, where
456 , 456 | 436
P=+5 *157 * 1o%

1 456 | 456«
Px"ﬁi"‘ib‘;*iﬁ{ﬁ+ ......... renesenss

1 \_ 456
o{ 1o}

PR T Ry raas

3,456 33423
33456456, . c00as .".....‘.;‘—'3*‘5"}3‘%“%_%
The children can find fractional representation for a large
number of terminating and decimal expressions.

Experiment 134, A Non-Terminating Nog-Recurring Number

Consider the numbser
*10100100010000100000 ...cveeeeL..

in which the numbers of zeros between the ‘ones’
1,2,3 4,5, 6,.... This is neither a terminating decimal nor a
recurring decimal, This cannot be therefore represented as a rational
number because if it could be represented as a rational number, it
would be either a terminating decimal or a recurring decimal.

are successively

Thus there exist decimal expressions which are not rational
numbers. Such numbers are called irrational numbers.
Experiment 135. Irrationality of v

What about +'2 ? We have seen that

D2
AT
has no selution in integers e, «/2:/% has no solution in integers

fany

¥'2is therefore not a rational number. 2 cannot therefore be

represented as a terminating decimal or as a recurring decimal.

Therefore +'2 must be a non-terminating non-recurring decimal.
V2=1414cicccninnn....

This process will not terminate and no recurrence can occur. If

we wanted to prove this factby direct calculation, we would not be

able to do in a finite period of time.

In the same way children can see that square root of any
number which is not a perfect square or the cube root of any num-
ber which is not a perfect cube etc. cannot be represented as
terminating or recurring decimals.

There are other numbers which have this property. One such
number is = which is defined as the ratio of the circumference of
acircle to its diameter. Its approximate values are 22 or 3-14]59
but to get its ‘exact” value we require an infinite number of decimals.

Two thousand five hundred years ago its approximate value
was supposed to be 3, later its approximate value was found correct
to four or five places of decimals in India and elsewhere. More than
two hundred years ago, a person found its correct value to 700 places
of decimals by work extending over a number of years. Nowits
value can he found correct to thousands of decimals in a matter of
minutes by fast electronic computers, but we can never find its
exact value even by the fastest electronic computers for even they

Wwould require an infinite amount of time.



Patterns in Partitions

Experiments : 136 to 145

Experiment 136. Partitions into Two Parts

Take two boxes, say red and blue, and give the child four
objects. In how many different ways can he place these four objects
in the two boxes 7 He can place 4 objects in red box and 0 objects
in blue box or he can place 3in red and 1 in blue or 2 in red and 2
in blue or 1 in red and 3 in blue or 0 inred and 4 in blue. There
are thus 5 different ways corresponding to

4=44-0=3+1=2+2=1+43=014

Similarly,

53=54+0=4+1=34+2=243=1+4=0+3

6=64+0=5+1=4+2=343=2+4+4=1+5=0+6

T=T+4+0=611=5+4+2=443=344=2+45=146=047
and so on. Let the child note the patterns.

(@) The number of ways is always one more than the number
of objects.

(b) When the number of objects is seven, the difference in the
number of objects in the two boxes is also even and when the number
of objects is odd, the difference in the number of objects in the two
boxes is also odd.

(¢) The child can now conclude that the difference of two
numbers is odd or even according as their sum is odd or even. Can
he see the reason for this? He easily sees that the sum of two _
numbers minus difference of these two numbers is always even

[(x--)—(x—y)=2y)
He may also note that difference of two even numbers is even and
difference of two odd numbers is also even, while the difference of
one odd number and one even number is always odd.

[2m—2n=2(m—1m), 2m+1)—(2r+ 1)=2(m—n),

Cm+1)—2n=2(m—m)+1, Zm—(2n+)=2(m—n—1)+1]

Experiment 137. Partitions into three parts,

Next take three boxes, say red, blue and white and give the
child 1,2, 3, 4,...... objects and ask him to place these in the different
boxes in all possible ways,

Two ohjects : 6 ways
Red Blue White

Quie object : 3 ways
Red Blue White

1 0 .0
010}1 }2
a o 1

O = DO
—_—0— oD
—_— p OO

} 1+1

Four objects : 15 ways
Red Blue White

Thre_e objects : 10 ways
Red Biue White

30 0 a0 0
9 3 0 } 3 0 4 0 } 4
0 0 3 o 0 4
> 101 31 0
2 6 1 | 30 1|
12 0 | i3 0 |
1 o 2 ¢ 2 too 3 ¢ 3l
o 1 2 o 13|
0 2 1] 0 3 1)
TR T T SR I 2 2 0
> 6 2 } 242
0 2 2
2 1
ST S T QPR
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(@) . Let the children note the systematic method of finding all
possible different ways, Without using 0, we can write ¢ as 4 or
3+1lor 242 or 2+41+1. All the four objects can be put together
in one bex in three different ways. The four objects cari be divided
into two groups of 3 and 1 objects and these two groups can be placed
in the three boxes in 6 ways.
groups of 2 each and these two groups can be placed in the boxes in
3 different ways and finally the four objects can be divided into three
groups of 2, 1, 1 objects each and these three groups can be placed in
the three boxes in 3 different ways.

{#) Let the children complete the foliowing table
Number of objects 1 2 3 4 5 6.
Number of ways I 6 10 15 21 28....

Let the children guess the pattern. The number of ways can
be obtained by successively adding 3, 4, 5, 6,...... The children can
now continue the table, The children can also make charts showing
all the different ways for 3, 4, 5, 6 objects.

Experiment 138. Partitions into four parts,
The children will now be curious to see what pattern emmerges if
‘they have four boxes, say red, blue, green and white.

One object: 4 ways

. Two objects 1 10 ways
Red Blue Green White

Red Blue Green White

{1 o 0o 0 2 0 0 0
0 1 o 0 1 0 2 1) 0ol ,
0 0. 1 0 0 0 2 0
0 0 0 1 0 0 ] 2
1 1 0o 0
1 0 1 0 j
1 0 0 i ;
o 1 1 of !l
0 1 0 1]
_ 0 0 1 1)
Three objects : 20 ways
Red Blue Green White
3 ¢ 0 o
0 3 0 0 3
0 0. 3 0
0 0 0 3

They can also be divided into two -

some possibility and may have to retrace all his steps.

2 1 0 o0 O o 11
2 0 1 o 1 0 1 .
2 0 0 1 1 1 o 1 (HIH
1 2 0 0 1 1 1 o
10 2 0

2
A SR S S 2
o 1 0 2
0o 2 1 0
o 2 0 1
o 0 1 2
o 0 2 1 ]

(a) Let the children now complete the following table ;
Number of objects : 1 2 3.4 5.

Number of ways : 4 10 20 35 56......
Let the children guess the pattern. What are the successive
numbers being added ? These are 6, 10, 15, 21,...... but these are

precisely the numbers they got in the last section.

(5) The children may now be able to guess as to what happens
when they have five boxes, say red, blue, green, yellow and white and
similarly what happens when they have 6 boxes and so on. They get
the following table '

Number of objects : 1 2 3 4 5 6
Number of ways )
{with 1 box) 1 1 1 1 i 1

Number of ways

(with 2 boxes)

Number of ways

(with 3 boxes)

Number of ways

{with 4 bo;tges)

ays

(I:Ivl:tr?lbserngg) Y 5 15 35 70 126 210

The children may note that cvery number on this table is the sum
of the number on.its left and aboveit. The table can now be continued
indefinitely both towards the right and in the downward direction.

(¢) The ability to count and enumerate all possible wayslof
doing an operation is an important mathematical ability and skill.
The child learns to think systematically and with concentration. If he
does not proceed systematically or loses concentration, he will miss
Even grown-
ups very often miss some possibilities in day-to-day life because of
this lack of facility of syslematic enumeration.

2
3 6 10 15 21 28
4 10 20 35 356 84



(d) The child also sees here some patterns emerging and begins
to realise that the capacity to recognize patterns can considerably
simplify his work. If there were 15 objects and 20 boxes, the direct
method of enumeration will take days and even then one would
not be sure whether one is tight. With the help of the above table
prepared by recognizing patterns, one can get the answer in a matter
of minutes. _

(&) It may also be emphasized that recognizing a patterii does
not ensure that it will always hold, though it makes it highly
likely to be true. To establish the pattern completely we need
some more advanced mathematics and the children may be
motivated to-learn more mathematics in order to work out the
proofs. :

Experiment 139, Partitions on an Abacus.

What we did in Experiment 136 has an interesting interpretation
on an abacus.  Suppose there are three needles (unit’s needle, ten's
needle and hundred’s needle) and we are
given 2 beads. How many different numbers
‘can we show on the abacus 7 Obviously these
are the 6 numbers 200, 020, 002, 119, 101, O11.

Arguing in the same way, with 3,4,5,6,7, 8
and 9 beads we- can show respectively 10, 15,
21, 28,36, 45, and 55 numbers. How many
numbers can we show with 10 beads ? The
next number in the sequence is 66, but it is
obvious that the partitions 10, ¢, 0; 0, 10, 0 0, 0, 10 are not nossible
since no needle can have more than 9 beads. Thus the total number
of numbers we can show with 10 beads is 63. The next number in
the sequence is 78, but with 11 beads, the following partitions are not
-possible: 11,0,0; 0, 11,0; 0,0, 11; 10,1, 0; [, 10, 0; 0, 10, 1; O, 1,
10; 10,0, 1; 1, 0, 10. So the total number of numbers which can be
shown with 11 beads is 69. The total number of partitions for 12 is
91, but the following partitions are not permissible : .
12,0,0;0,12,0; 0,0, 12; 11,1, 0; 1, 11, 0; 0, 11, 1;
0,1, 11; 11,0, 1; 1,0, 11; 10,1, 1; 1,10, 1; 1, 1, 10.

The total number of different numbers which can be shown is
thus 79. The children may now continue similar arguments for
13, 14, 15 beads. They may also investigate the results when

there are 2 needles or 4 needles in the abacus. They may also
investigate the results when each needle is required to have at least
one bead so that we have to find the total number of partitions of a
given number into a given number of non-zero addends when none of
the addends can exceed 9.

Experiment 140. Partitions into Non-Zero Addends.

Without using zero, let the children try to express a given
numbei as a single number, as a sum of two addends, as a sum of
three addends and so on and find the total number of ways in which
this can be done. Thus we have

Number 2: Two ways Number 3 : Four ways
2 141 3 241 14141
142
(n (0 @ @ (D

Number 4 : Eight ways
4 341 24141
242 14241
143 1+142
1 @ (3 &)

14+14141

Number 5 : Sixteen ways
5 441 34141 24141+1
144 14341 1424141
3+2 14143 1414241
243 24241 1414142
2+142
14242

n @ © O] {n

1+141+1 51



Number 6 : Thirty two ways

6 S+1 44141 3414141 2-1+1+1-41
442 14441 1434141 142414141 1411414141
343 14144 1414341 141424141
244 34241 1414143 1H1404241
145 34142 2424141 141414142
14243 2+142+1
14342 2414142
24143 14+14242
24341 1424241
24242 142142
(1 (5} (10 (10) «3) (1)

The number 6 can be expressed as the sum of one addend in

one way, as a sum of two addends in 5 ways, as a sum of three -

addends in 10 ways, as a sum of four addends in 10 ways, as a sum
of five'addends in 5 ways and as a sum of six addends in one way.
The children can continué the process with the numbers 7 and 8.

Experiment 141. Number of Partitions into Non-Zero Addends.

The children can now prepare the following table :

Number 1 2 3 4 5 .6 7 8
Total number
of ways 1 2 4 g8 16 32 64 128

The pattern is now obvious. With the help of this pattern,
they see that the total number of partitions of 16 would be 32,768.
Without noticing the pattern and trying by direct enumeration, it
‘will take a long time and even then the answer may not be corréct, if
some mistake is made in the process.

i

- second given number.

Experiment 142. Pascal Triangle Pattern.
Another pattern which the children notice is the following :

A

N
AN
N 7N
7 4 ]
l"\ 12\ "|\
'I \ ,’. Y " \‘
L3 3
I’ SN S hY SN
; L4 L NS \I
:l‘ ,4\ () Y /Yy
P .t NN S
r Ly (W4 LS4 (Y4 N
L 5 0. 10 8 )\
P A N 2 N AR
’ ) v v/ . ! \61 \|
A 8 15 20 1B &

J‘f\f'\I\/\/-\,\\
g [ A o
7 21 35 3521 7 )
This pattern is known as the Pascal Triangle and will occur
again and again in our discussions.  Here each number is obtained

by adding the two npumbers just above it, one¢om its left and the:

Noticing this pattern, we can continue
We can now interpret the last line

other on the right.
the table as long as we like.
as follows : ]

The number 8 can be expressed as the sum of one addend
in one way, as the sum of two addends in seven ways, as the sum of
three addends in twenty-one ways, as the sum of four addends in
thirty-five ways, as the sum of five addends alse in thirty-five ways,
as the sum of six addends in twenty-one ways, as the sum of
‘seven addends in seven ways and as the sum of eight addends
in one way.

To find the number of ways in which a given namber can be
broken up into ‘another given number of addends, we look up the
line in. tLe above table corresponding to the first given number
and then look up the number on this line corresponding to the
It will be useful for the children to read the
table in this way and then actually verify some results by direct
enumeration.

The children can also note the symmetry in the above table from
Ii]v-n wirnkid nemd tha laft



Experiment 143. Partition with Cuisenaire Rods.
A useful way of representing these partitions is by using
Cuisenaire rods. These are rectangular rods of the following lengths

and colours ;

Length Colour Symbol
i White W
2 Red R
3 Green G
4. Purple P
5 Yellow Y
6 Dark green D
7 blacK K
8 browN N
9 blUe U

10 Orange O

Any number of such sets are made available to the children.
A child is given a rod (say of length 5).
of length 5, then get two rods with total length 5, then get three rods
of total length 5, then get four rods of total length S and finally he has
to get five rods of total length 5 and he has to do in all possibie ways,
Different children can be given rods of different lengths for this

purpose. The arrangements they get are the following :

He has to find first one rod

L 2 3

2 |t 7 1) r": : 55 3
BRI ) K 4 /]
} 2] 2 1|4 .
L] 1| 3 3 12 |}

2 I 2| 3 J

i{a2 i 3 e

1 IERE

I"ili} 1] 3
2z |2 1%

2 2

112 ] 2

2 [o]i]

11 2 |

1]t 204'

111 2

tfoefsfofoly
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|3

£
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K

REE

el |®]
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%
11

o

k]
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»
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n,,,f_j‘n »

m..:.h! n

£
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Experiment 144. Pascal Triangle Pattern in Powers of Eleven.
Let the children note the patterns in the following multipiications :

Ix11==11 1 4 6 41
Hx1l==1321 i1
11wl x11=1331 1 4 6 41
Hxiix1x11==14641 u_l_ﬁ_.ﬁ‘ 4 } e
1 5¢0M1ey s 1
11
1

1 5(10)10) 5
1 5 (0¥10)5 1

16 (152051556 1
These give the patierns of the Pascal Triangle.

Experiment 145, Figﬁrate Numbers,
Let the numbers in the Pascal Triangle be written according to the

inclined lines. Then we get the arithmetic triangle in the simplest form, -

I, 1 1 1 i i 1 | S

~.
~

1 2. 3 4 5 .6 1 8

1 3 610 15 21 28 36

-
LN
~

.........

crraeswes

1 4 10 20,35 56 84 120 .
15 15 35 J0_ 126 210 330 ...
1 6 21 56 126 \‘2521,\ 462 792 .
1 7 28 84 210 462 \‘921;\ 716 o
1 8 36 120 330 792 1716 \3‘432\
I 9 45 165 495 1287 3003 6435 ..

To find any tumber we add the number just above it and just
on its left. Alternatively to find any number in this triangle, we find
the sum of all the numbers in the row above the row of this number
and upto the number just above this number or find the sum of all

the numbers in the column on its left and upto the number just to
the left of this number. As iflustrations we have !

84=1+43464+104-E5+421+28=14+6-+21-+56
0=1+44-10+20435 ==]4-44+104+20-+35
36=14-7-+28 =1 4243444+ 54 6-+T+8

The numbers in successive horizontal rows {or in successive
vertical columns) are called figurates number of 1st, 2nd, 3rd order
etc.

The figurate number of first order are all odd.

The figurate number of second order are zlternatively odd and
aven.

The figurate number of third order are : 2 odd, 2 even, 2 odd,
2 even,

The figurate number of fourth order are : 1 odd, 3 even, ! odd,
3 even.

The figurate number of fifth order are : 4 odd, 4 even, 4 odd,

Let the children continue this pattern.



6 Number Patterns in We o also represent these on graph paper as follows :
| Geometrical Shapes

e S P vy ——e

Experiments: 146 to 155 X ] ] ] ]

i ‘ From the shape of these, we can also call these stair-case
numbers.

Experiment 146, Triangular Nombers. . . s Namb
Let the children arrange dots as follows: ' Experiment 147. Square Sumbers.

. . Let the children combine two consecutive triangular numbers
L * . * or stair-case numbers and sec what they get :
* ¥ * & - & . . w . ¥ s & # ». -« 2 » & B
> & = * * * F @ .
s 8 o8 £ 53 & P « > ® LI + & 4 » 8
. LR S B ] » & € ¢ e o LI I T
l 3 & 10 : 15 R S
. The children can continue the pattern. The numbers they get AN .
this way wz., 1, 3, 6, 10,15, 21 ,...celn are called triangular numbers '
and are called so for obvious reasons. I 4 9 16" 25
The dots can also be arranged as follows : ]
* - * - *
¥ # . & . = ’» = L
s 2 » * -l E » » O. . D IL L

“ 5 8 ¥ S & ¢ @ - . .

These numbers are called square mumbers and again for obvious
reasons. The children can now easily deduce that the sum of two
i 2 6 10 15 consecutive triangular numbers is a square number.

. 5 F # 2

The square number can aiso be represenied as follows :

b
O\
A
£ A
| f+3 1+3+5 1+345+7 1+3+5+749
1 4 9 16 25

The children can now deduce that the sum of aay number of
consecutive odd numbers is a square number which is the square of



the number of odd numbers, They can now be asked io find the

If we have to add the first ninety-nine numbers, we get 49 pairs

sum of the first 20 odd numbers or the sum of the first 100 odd Wwith sum 100 each and one isolated mumber viz,, 50 so that the sum

numbers.

Experimient 148. The Sum of First N Natural Numbers,

Let the children ses what they get by adding a staircase number
to itself. :

=
]
2X3  2%6 2X10 2x15.
=2X3  =3X4  =4X5 =5X 6
We find : :
2% (14+2) =2x3
2x{(14+2+3) =31x4
2x{142+34-4  =4x5

2x(14243444-5)=5x%x6
The children can easily see the pattern viz.
2X(1424344--...... up to any nember}=~{that number)
(that number + 1} so that the sum of any number of natural numbers

is equal to half the product of this number with the next consecutive
natural number e.g., ’

T 243 4 100==(100 x 101) 2 2= 5050
The same result can be easity seen by writing the numbers as follows :
. !4 23434+44+5 96+ 97+ 98+ 99+ 160

e =i

- and then combining the first with the last, the second with the last

but one and so on ; it is easily seen that in this way we get 50 pairs
" of numbers and the sum of nombers of each pair is 101, so that the
_sum of the fitst hundred numbers is 50 x 101 =5050.

of first ninety-nine numbers is 4950.

- The tecognition of pattern now enables us to find the sum of
any number of natural numbers e.g., the sum of the first 10,000 natu-
ral pumbers is (10,0003 10,001)--2. "Without this pattern, it would
have taken many hours to find this sum.

The formulae we have found can be written as
14+243+4.nne to n terms=n x (n+1)+2
143+53+T4.0nene to n terms=n?

2444648 4......to n terms=2(1 +2-+3+...... to nterms)

_2n+bn_
=" =n(n-1).

Experiment 149. Finding Square Roots.
Let the children note the following geometrical pattern

* - * » »
* »* %* * &
» - » #* * »* »”*
» * » - »* » -3
» * - ” * * *
* - * - - * - » *
#* ¥ »* | “w & *
and ded
educe R
14 3=2
14+ 34 5=13
1+34+54+ 74+ 9=2°
1434547+ 94 11 =6
I+A34354+7+94+114+13=7
et Toersieees
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