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Introduction

This booklet is an invitation to mathematics. Its aim is to give you a flavour of
mathematical activity, of solving problems and making discoveries. The topics
chosen are not those normally found in textbooks, but the material is easily within
the reach of a high school student or a literate adult.

While writing the booklet, we did not intend it to be a booklet just to be read.
If you are in a hurry to turn the pages over and get to the end of the book, then
you are probably missing something. Give yourself time and savour the activities
described in the book. Take breaks whenever you need to mull over something.

The material in the booklet is written in the form of investigations. Questions are
raised, hints and suggestions are offered. The presentation is not formal. So if
you are looking for the elegance and beauty of terse mathematical theorems and
proofs, then this booklet is not the right place to find them. At the same time,
difficult material is not avoided. There are parts of the booklet where you really
must slow down and try to digest the material. If you wish, you could skip to the
next investigation and return to the difficult parts later.

The booklet begins with something very familiar — the Pythagoras theorem. But
before you reach the end, you would have been introduced to some new topics
and ideas such as tessellations and graphs. You are not just introduced to re-
sults in mathematics but also to problems. And some of these problems are open.
Pythagorean dissections, for example, are still to a large extent unsolved. They
are waiting for new ideas and approaches. If you are inspired to try out some new
dissections and make your own discoveries, the purpose of the book will be more
than fulfilled. All this however, is just the tip of the iceberg, just an invitation to
some very interesting mathematics.



Investigation 1 Pythagoras theorem by dissection

In this investigation our aim is to discover ways of proving the Pythagoras the-
orem. All the proofs that we will find involve showing that two areas are equal
by dissection. That is, the areas concerned are cut into pieces so that one area
can be transformed into the other by re-arranging the pieces. Dissection proofs
therefore are a bit like jigsaw puzzles. It is a good idea to put the following things
together before you begin the investigation: thick card paper to cut out triangles,
squares, etc., some tracing paper or overhead transparency sheets, sketch pens or
transparency pens, a pair of scissors. It is possible to do the investigation without
these things, but having actual geometric shapes cut out from thick paper lets you
explore different possibilities more easily.

Every student in high school has heard of the Pythagoras theorem and most stu-
dents can state it. The theorem is probably one of the oldest theorems in math-
ematics and was known to the Babylonians in the second millennium B.C. One
of the most impressive mathematical records from ancient history is the Plimpton
322 clay tablet (No. 322 in the Plimpton collection at Columbia University) from
about 1800 B.C. This tablet gives a list of Pythagorean triplets, that is, sets of three
whole numbers which can form the sides of a right angle triangle like {3, 4, 5} or
{8, 15, 17}. In another tablet, the Babylonians have written down the length of
the diagonal of a unit square correct to about one millionth. These are good indi-
cations that they knew and used the Pythagoras theorem. Pythagoras, the Greek
philosopher and mathematician, lived in the 6th Century B.C. The Pythagoras the-
orem clearly was known to people from different civilizations of the world from
before that time. Why do we then call the theorem after Pythagoras? Some histo-
rians believed that he was the first to prove the theorem. However, many modern
historians think that even this is doubtful. The name remains unchanged largely
because of usage, because most people know the theorem by this name.

Let us recall the Pythagoras theorem. A common statement of the theorem runs
something like this.

Theorem 1.1 The square on the hypotenuse of a right angle triangle is equal to
the sum of the squares on the other two sides.

Without knowing the Pythagoras theorem if you just looked at the right triangle for
long enough it is unlikely that you will ever guess the relation between the sides of



the triangle. In this sense the Pythagoras theorem is non-obvious and non-trivial.
It comes as something of a surprise and arouses our curiosity. We wonder what
makes the theorem true search for a proof. Being the oldest theorem, it does not
come as a surprise to learn that the Pythagoras theorem is also the most proved
theorem. Elisha Scott Loomis, who wrote a classic book in 1927 on proofs of the
Pythagoras theorem, claimed that there were over 370 different proofs, each one

calling for a different figure!

Although the Pythagoras theorem is
non-obvious, it is not difficult to
prove it. One of the simplest proofs,
which you have probably seen, has
a square inscribed inside another
square. Try to discover the proof if
you cannot remember it. (If you re-
ally give up then you can see the fig-
ure shown on the next page.) You will
notice that the proof involves some al-
gebra, some manipulation of formu-
las. Most proofs of the Pythagoras
theorem that you have seen probably
involve some algebra. In this investi-
gation we are going to try something

Figure 1.1: The Pythagoras theo-
rem

different. We will try to find proofs which don’t involve any algebraic manipula-

tion at all.

Figure 1.2 is an example of such a
proof. In the right angle triangle, the
two sides forming the right angle are
a and b, and c is the hypotenuse. Iden-
tify the three squares a2, b% and c2.
The figure shows how you can cut up
the two smaller squares to form the
big square.

Check whether the pieces in the big
square are the same as (congruent to)
the pieces in the smaller squares. The
pieces numbered 1 and 2 are already

a

Figure 1.2: A dissection proof of
the Pythagoras theorem



b a
A simple proof of the Pythagoras theorem. You @& b
will need to work out the details of the proof.
Hint: Use the formula for (a + b)?. b a

in the big square. You have to check if the pieces numbered 3,4 and 5 are con-
gruent in both the squares. Compare Figure 1.2 with the proof that is described
in the previous paragraph for which you turned the page. Do you see any connec-
tion? Instances of both these proofs are found in some of the ancient Indian texts
in mathematics.

There are other examples of dissections which are found in ancient Indian texts.
For example, in the Aapastamba Sulvasutra we find a procedure to compute the
area of an isosceles trapezium by dissecting it and forming a rectangle. These ex-
amples are not proofs in the same rigorous sense as found in modern mathematics
or even in Euclid. Nevertheless they are visually appealing and interesting. When
we know that two sets of figures have equal areas, it is intuitively satisfying to
find a simple dissection which can change one set into another. Moreover even
something as simple and as well known as the Pythagoras theorem can give rise
to problems that are both fascinating and sometimes very difficult. In this inves-

tigation and the next one, we will explore some of these Pythagorean dissection
problems.

Let us return to our problem of dissection proofs of the Pythagoras theorem. We
have seen an example of a dissection proof. Can you find other ways of cutting up
the small squares on the sides forming the right angle and assembling the pieces to
form the square on the hypotenuse? Take a right angle triangle with sides 3 units,
4 units and 5 units. How would you cut the two smaller squares to form the bigger
square? Figure 1.3 shows one way of doing this. The 3 x 3 square has been cut up
into two 3 x 1 rectangles and three 1 x 1 squares.
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Figure 1.3: Cutting two small squares to make a bigger square

This method works for the particular triangle that we happened to choose. Will it
work for other right angle triangles as well? What happens when the triangle has
sides whose lengths are not whole numbers? What happens when the lengths of
the sides are irrational, say, when the lengths are 1, V3 and 27

It is now probably evident to you that cutting up the square into smaller rectangles
and squares has limitations. We must look for other ways of cutting the small
squares to obtain the large square which will work for any right angle triangle. Try
this out and see if it looks like a hard problem.

By the time you go through this investigation, you should be able to come up with
a number of ways of cutting up the small squares and assembling the large square.
That is, you should be able to find different dissection proofs of the Pythagoras the-
orem. In fact, there is a method which gives several ways of proving the theorem
by dissection including the one we saw in Figure 1.2.

Do the activities described below one after another. The connection between them
may not be apparent at first, but they will all help in solving our main problem —
of finding dissection proofs of the Pythagoras theorem.

ACTIVITY: OVERLAPPING OF SQUARES, CENTRE TO EDGE

Cut out two identical squares, say 6 cm x 6 cm from card paper, or better still
from tracing paper or overhead transparency sheets. Put one square on top of the
other so that a corner of the top square lies on the centre of the square below as
in Figure 1.4(a). The edges of the two squares intersect at their mid-points. It is



obvious that the area of overlap is }th the area of each of the squares. Can you
spell out the reason why this is so? '

(a) (b)

Figure 1.4: Overlapping squares

Rotate the square on top a little still keeping its corner over the centre of the square
below as in Figure 1.4(b). How much of the area of the square at the bottom
overlaps with the area of the square on top? Compare this with Figure 1.4(a). As
the square rotates, some area of overlap is lost on one side and some area is gained
on the other side. Compare the areas which are lost and gained. What can you now
say about the area of overlap?

Now take a square which is larger than these squares, say 8 cm x 8 cm. Lay it on
top of one of the 6 cm x 6 cm square so that the corner of the larger square lies on
the centre of the smaller square as in the Figure 1.4(c). How much of the area of
the smaller square overlaps with the area of the larger square?

If you have found that the area of overlap is still ;th the area of the smaller square,
find a way of cutting the smaller square into 4 pieces, each of them congruent

to the overlapping portion. (Try extending the lines which form the edges of the
bigger square.)

Write your results down. You will use them later. Now go on to the second activity.

ACTIVITY: THE ISOCELES RIGHT TRIANGLE

Consider the right angle triangle shown in Figure 1.5. It is a special right angle
triangle because the two sides which form the right angle are equal. What will
the ratio of the lengths of the sides forming the right angle to the hypotenuse be?
From the Pythagoras theorem it follows that the area of the large square is double



the area of each of the small squares. Can you show how the two small squares can
be cut into pieces and put together to form the larger square? This is our dissection
problem for the special case of the isoceles right angle triangle.

There are two simple but different ways of
cutting the smaller squares to form the larger
square. One of them is a four piece dissection,
that is, it has only four pieces forming the larger
square, and the other is a five piece dissection.
If you have found only one of them, try finding
the other one. If you are in a hurry you could
look at the figure on the next page.

It is quite easy to find a dissection proof for the
isoceles right angle triangle. It pays however
to take a closer look at the dissections. We are
going to suggest that you look at it in an en-
tirely new way. This new way involves tiling
patterns. Tiling patterns which do not have any
gaps and can be extended to cover an infinitely

B4

Figure 1.5: An isoceles
right angle triangle

large area are called tessellations. The study of tessellations and their properties is
an interesting branch of mathematics. It is also an area where a lot of new discov-
eries are still waiting to be made. Tessellations have a relevance for the problem
that we are pursuing. In fact, we are going to make use of tessellations to discover
solutions to our dissection problem for right angle triangles in general. But first let
us examine the dissection problem for the special case of the isoceles right angle

triangle making use of tessellations.

Imagine a floor tiled with tiles of the size of the
small square in Figure 1.5. Figure 1.6 shows
a portion of the tile. The figure also shows a
tile of the larger square placed over these tiles
so that two corners of the large square fall on
the centers of two small squares. Figures can
sometimes be misleading. So you will have to
verify that the corners of the large square actu-
ally fall on the centres of the tiles. (Hint: find
the horizontal and the vertical distance between
the centres of the tiles). Now look carefully at

N

Figure 1.6: Square over-
lapping on a square tiling



Two different ways of cutting
equal squares to form a square
twice their size.

the areas which overlap. Does this tell you how to cut two smaller squares and
form the large square?

Move the larger square over the tiles without changing its orientation and try to
find other ways of cutting the small squares to form the large square. You could,
for example, let the corner of the large square fall on the corners of the smaller
squares, or on the midpoint of their sides, and so on. Figure 1.7 shows these
possibilities. Figure 1.7(a) yields a dissection that you have already seen. Identify
which one it is. Figure 1.7(b) shows a new dissection. Go back to Figure 1.5 and
show how the two small squares can be dissected to form the bigger square as
suggested by Figure 1.7(b). How many pieces form the dissection?

- r A\]
NS

&

L I N

(a) ()

Figure 1.7: Different positions of the overlapping square showing
different dissection possibilities



ACTIVITY: THE PYTHAGORAS THEOREM BY DISSECTION

Figure 1.8 shows a portion of a tiling of squares. Only four square tiles can be
seen. Another square lies on top of the tiles so that the corners of the top square
fall on the centers of the tiles below. Note that the square on top is the same size
as the square tiles below.

Imagine now that the square on top
is made slightly bigger (shown by the
dotted line in the figure). The size ( —l
of the tiles below is unchanged. How ’
would you have to rearrange the tiles )
so that the corners of the square on top \
still fall on the centers of the tiles be- l
low? You are not allowed to move the l

|

|

|

tiles so that all contact between them
is lost. Try and ensure that adjacent
square tiles have as much contact along
their edges as possible. It is useful
to try this out by drawing various di-
agrams. It is better still to have cut Figure 1.8: Square overlapping
outs of the square tiles with the larger on a tiling

square drawn on transparent sheets or

on tracing paper.

This is one of the important steps in finding Pythagorean dissection proofs. So
take some time thinking about this problem. Only if you give up after a lot of
thinking, look at the figure on the next page. (However, you are allowed to look at
the previous figures and you can get a clue from looking at the tiling we drew for
the previous activity, which is shown in Figure 1.6.)

After you have found a way of arranging the tiles so that the enlarged square on
top falls corner-to-centre on the tiles (or if you have given up and turned to the next
page), study the arrangement. How has the tiling changed? How many different
squares can you see in the tiling? Look carefully at the portions of the square tiling
covered by the square on top. If you use the results of activity 1, you should be
able to find a relation between the areas of the smaller squares and the bigger one.

Take the sides of the two smaller squares, call them a and b, and form a right angle
triangle out of them. What will be the area of the square on the hypotenuse? How



The figure shows how the square tiles should be
arranged so that the corners of the larger square
fall on their centers. Notice that the space formed
in the centre has the shape of a square.

is it related to the area of the bigger square in the tiling arrangement?

Also study the way the larger square is overlapping with the smaller squares. Does
this suggest to you how one each of the smaller squares could be cut and reassem-
bled to form the larger square? Draw a diagram of the two squares a? and b2 and
show how they must be cut to form the large square as suggested by the tiling
figure.

It may be clear to you by now that we have indeed discovered a dissection proof of
the Pythagoras theorem. The three different squares are the squares drawn on the
sides of the right angle triangle. It is convenient to give names to these squares. In
the right angle triangle, let the sides which form the right angle be a and b and the
hypotenuse c. Let us choose a to be bigger than b. We will call the square drawn
on side a the a-square. The square drawn on side b will be called the 3-square and
the square on the hypotenuse will be the I'-square. The §-square is the smallest
square.

As in the case of the isoceles right angle triangle (activity 2), we can obtain differ-
ent dissections by moving the ['-square to different positions on the tiling. Explore
these arrangements and see how many dissections are possible. To see more possi-
bilities, you may have to extend the tiling by adding more of the « and §-squares.
Below in Figure 1.9 you will find some possibilities. Match the dissections shown
on the left with the tiling arrangements shown on the right. At the beginning of
the investigation we encountered a dissection proof (Figure 1.2). Find the tiling
arrangement which gives this proof.

Notice that in each of the arrangements the corners of the I'-square fall on con-
gruent points of the a-squares. In the first tiling arrangement shown, for example,
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points A, B C and D are congruent points on congruent squares. By this we mean
that the position of A within the first a-square is the same as the position of B
within the second a-square. Such points are called congruent points. It is neces-
sary for the corners of the I'-square to fall on congruent points for the dissection
to be possible. Is this condition satisfied as you move the I'-square over the tiling
arrangements? Check if the corners of the I'-square fall on congruent points in the
other arrangements in Figure 1.9. (What happens if you rotate the I'-square?)

The question of the generality of the dissection proofs shown remains. Can the
dissection proof that you have discovered be used for any right angle triangle? In
the tiling arrangement shown the square at the centre, the 3-square is smaller than
the « square. What happens if you go on increasing the length of side b? Does the
dissection still work? What happens if side b equals side a? How will you make
the dissection work if side b is bigger than a?

We have been successful in finding a general method to obtain various dissections
of the @ and (-squares into the I'-square. In the next investigation, we will gener-
alize our problem and then look for solutions to new problems, all of which have
to do with the Pythagoras theorem.



4

2

Figure 1.9: The left hand side of the figure shows different posi-
tions of the overlapping square. The right hand side shows differ-
ent dissection possibilities. Match the tiling arrangements on the
left with the corresponding dissections on the right.
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Investigation 2 Other Pythagorean dissections

We have explored different ways in which the Pythagoras theorem can be proved
by dissection. In this investigation, we are going to explore a general version of
this problem. Recall that the Pythagoras theorem in the standard version of the
theorem speaks of squares drawn on the sides of the right angle triangle. Have
you ever wondered why only squares have to be drawn? Can the figures drawn on
the sides of the right angle triangle be different from squares? Let us modify the
Pythagoras theorem by replacing all the squares in the theorem with equilateral
triangles. Would the modified Pythagoras theorem still be true?

Theorem 2.1 In any right angle triangle the equilateral triangle on the hypotenuse
i1s equal to the sum of the equilateral triangles on the sides forming the right angle.

Figure 2.1 shows equilateral triangles drawn on the three sides of a right angle
triangle. Can you prove theorem 2.1 or show that it is in general false?

It is easy to find the formula for the
area of an equilateral triangle. The
height h of the triangle is given
by the Pythagoras theorem in the
standard version. (See Figure 2.2.)

a\ 2
e
“\g
22
= 2
“Ty
3a* V3a Figure 2.1: Right angle triangle with
- Vi T T equilateral triangles drawn on the

sides



Area of an equilateral triangle =

_ V3
4
_ V3
4
Hence,
3
Area of an equilateral triangle = %

We know from the Pythagoras theorem in
the standard version (Theorem 1.1) that

a’+ b =c?

Multiplying throughout by 7‘? we get,
V3 V312 _ V3

—4—(12 + Tb2 = TCQ

from which it follows that the sum of the
areas of the two equilateral triangles on the
sides a and b is equal to the area of the
equilateral triangle on the side c. Hence
Theorem 2.1 is proved.

It is possible to think of other figures
drawn on the sides a, b and c. Fig-
ure 2.3 shows regular pentagons drawn on
the three sides of a right angle triangle.
Is the Pythagoras theorem also true for
these pentagons? Is it true for other reg-

base x height

x Area of a square

B a
2

Figure 2.2: Equilateral trian-
gle

ular polygons? What about irregular polygons?
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Any polygon, regular or irregular, can be
cut up into triangles. Figure 2.4 shows
how this can be done by drawing all the
diagonals of the polygon from one of the
vertices. If two polygons are similar then
it is not difficult to show that for each pair ‘
of corresponding triangles into which the

polygon can be dissected, the triangles are
similar.

To prove this start with a triangle contain-

ing two sides of the polygon with the in-

cluded angle as one of the internal angles .

of the polygon (AABC and AA'B'C’ in Figure 2.3:. The Pythagoras
the figure). These two triangles are sim- theorem with pentagons on
ilar to each other since the two pairs of the sides of the right angle tri-
sides {AB, A’B'} and {BC, B'C’} are in  2ngle

the same proportion and the included angle is the same. Now consider AACD
and AA'C'D'. Two pairs of sides, {AC, A'C’} and {CD, C'D'} are similar. The
included angles /ACD and /A’C'D’ are equal, being the difference of the angle
in the polygon and an angle of the first pair of triangles that we have already seen
to be similar. Hence AACD and AA'C'D’ are similar. In this way we can show
that in each pair of corresponding triangles in the two polygons, the triangles are
similar.

If two triangles are similar, the ratio of

their heights is equal to the ratio of their

sides. Hence the ratio of their areas is the B

square of the ratio of their sides. Since two A
similar polygons can be broken up into
similar triangles, we can conclude that the
ratio of the areas of similar polygons is the F o / D
square of the ratio of their sides. E

Now imagine that similar polygons have

been drawn on the three sides a, b and ¢ Figure 2.4: Similar polygons
of aright angle triangle, where c is the hy-

potenuse. Let, P,, P, and P, be the areas

of these polygons respectively. We know that



b? 2
= — or P(,:Paxb—2
a

2 2
c c
=— o P=PFXx—
a a

20|38 Ju|m
gt\')

From the standard version of the Pythagoras theorem ¢® = a? + b. Substituting,
we have

(a? + b?) b?

P.=PF, =P Xx1+FX5=FP+h
a

a2
Thus we have a general version of the Pythagoras theorem for similar polygons.

Theorem 2.2 In any right angle triangle, if similar polygons are drawn on the
three sides, the area of the polygon drawn on the hypotenuse is equal to the sum
of the areas of the polygons on the sides forming the right angle.

In fact, the Pythagoras theorem need not be restricted to polygons. The theorem
would hold true for any set of similar figures composed of straight lines or curves,
which are drawn on the three sides of the right angle triangle.

Since our main interest is in dissections, and since we will restrict our attention
to polygons, we can now ask the question whether it is possible, in general, to
cut the polygons on the sides forming the right angle and assemble the pieces to
form the hypotenuse. A well known and powerful theorem, which was proved
independently by two mathematicians is of relevance to us. The mathematicians
were F. Bolyai, a Hungarian who proved the theorem in 1832 and P. Gerwien, a
German, who proved the theorem in 1833. Let us state this theorem without proof.

Theorem 2.3 (Bolyai-Gerwien theorem) If there are two polygons of equal area,
then it is always possible to cut one of the polygons into a finite number of pieces
and reassemble the pieces to form the second polygon.

Is this theorem useful for the dissection of similar polygons drawn on the sides of
a right angle triangle? We could always join the two smaller polygons drawn on
the sides forming the right angle in any way we liked and get a joint or composite
polygon. The Bolyai-Gerwien theorem is valid for polygons of any arbitrary shape.
So we can cut this composite polygon into a certain number of pieces and assemble
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the pieces to form the polygon on the hypotenuse. However the theorem does not
say anything about how many pieces we have to cut the first polygon into. In
general, the number of pieces may be quite large. It is very challenging problem
to find a dissection which involves the minimum number of pieces. We will call
such dissections elegant. By an elegant dissection, we mean a dissection which is

1. valid for a right angle triangle of any size having polygons similar to the
ones on the given right angle triangle,

2. which involves as few pieces as possible.

Condition 1 means that once we have found a way of dissecting the polygons for
a given right angle triangle, we can change the lengths of the sides a and b of
the triangle in any way we please. The dissection would still work and we don’t
have to search for a new dissection. Condition 2 is an incomplete condition since
we do not know in advance what the minimum number of pieces required for the
dissection is. However this is not an obstacle, rather provides a perennial challenge
and great dissectionists have been spurred on to “go one better”, that is, to reduce
the number of pieces in a known dissection by finding a new one.

We will call an elegant dissection which transforms the two polygonal figures on
the sides containing the right angle into the polygon drawn on the hypotenuse a
Pythagorean dissection. Finding a Pythagorean dissection for any polygon, even
for regular polygons is in general a very hard problem. We will explore two kinds
of polygons below for which Pythagorean dissections can be found relatively more
easily.

PYTHAGOREAN DISSECTION OF RECTANGLES

It turns out that we can use the tiling idea that we used for the Pythagorean dis-
section of squares also for rectangles. Let us draw rectangles on the three sides
of a right angle triangle. Remember from theorem 2.2 that the three rectangles
must be similar. That is, the ratio of the length and width must be the same for all
the rectangles. Figure 2.5 shows similar rectangles drawn on the sides of a right
angle triangle. We will call the sides common to the right angle triangle and the
rectangles, the widths of the rectangles. So the width of the three rectangles are a,
b and c respectively. For each rectangle let the height be k£ times the width. If k is
more than 1 we have tall rectangles on the sides since the heights of the rectangles



will be more than their widths. If £ is less than 1, the heights will be less than the
widths. The area of the three rectangles will be ka?, kb? and kc? respectively. Fol-
lowing the convention that we have adopted we will call the rectangle with width
a the « rectangle, the rectangle with width b the 3-rectangle and the rectangle with

width ¢ the ['-rectangle.

Let us now go back to the tiling arrange-
ment that we used in Investigation 1 and
try to make it work for rectangles. In the
tiling arrangements the -square is at the
centre and the four a-squares are around
it. In the same way let us place the (-
rectangle in the centre and four of the a-
rectangles around it as in Figure 2.6.

In Investigation 1 the I'-square was placed
on the tiling arrangement so that its cor-
ners fell on the centres of the four a-
squares. This is important because these
four points are congruent points of the
tiling arrangement. If we shift the I'-

Figure 2.5: Rectangles drawn
on the right angle triangle

square without rotation, its corners fall on congruent points of the tiling. We need
to check if this happens with the tiling arrangement of Pythagorean rectangles.

Check if in Figure 2.6 the distance be-
tween the centres of two of the a-
rectangles is equal to the length or to the
width of the I'-rectangle. That is, is the
distance equal to ¢ or to kc?

From the figure we find that the horizontal
distance between the centres of the two a-
rectangles is %" + '“2—“ = ka. If the small
(-rectangle was not present in the cen-
tre of the tiling, the centres of the two a-
rectangles would be on the same horizon-
tal line. The -rectangle pushes the centre
up vertically by a distance b. So the ver-
tical distance between the centres of the

ka ’TB
a A,:’__._ et b
kb

Figure 2.6: A tiling arrange-
ment of rectangles

a-rectangles is b. From the Pythagoras theorem we can write down the distance
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between the two centres as v'k?a? + b2. This is not equal to either kc or c.

Look at the expression inside the square root in the previous paragraph. What
should the terms be if we want the square root to reduce to kc? Clearly we need to
have £b* instead of 2. Can we change the arrangement of the rectangular tiles so
that we have kb as the vertical distance? Don’t be in a hurry to turn the page over
and look at the arrangement. You will surely be able to find it.

If you have found the correct arrangement, study it. Do all the four corners of
the ['-rectangle fall on the centres of the four a-rectangles? Does this give you a
dissection of the o and (3-rectangles into the I-rectangle? In order to check this
you will have to first find a way of cutting up the a-rectangle as suggested by the
tiling arrangement. (Hint: Draw lines to extend the edges of the I"-rectangle in the
tiling arrangement.) Next you will have to show that the pieces in the I'-rectangle
are congruent to the pieces that you have cut the a-rectangle into.

Just as we did for the tiling arrangement for squares, move the I'-rectangle to
different points and see if each position yields a different dissection. Do the four
corners fall on congruent points in the a-rectangles in these different positions?

Another question to explore is what happens when the relative sizes of a and b
change? What happens as b becomes bigger, equal to a and then bigger than
a? Does the tiling arrangement still give you valid Pythagorean dissections of
rectangles? What happens if you change the value of k, the ratio of the length
to the width of the rectangles? The figure on the following page also the tiling
arrangement for some long rectangles.

We have seen that by means of a tiling arrangement, we obtained a successful
Pythagorean dissection of rectangles just as we did for squares. Would tiling ar-
rangements work for other polygons? One of the conditions for the tiling arrange-
ment to yield a successful dissection is that the corners of the I'-rectangle falls on
congruent points of the a-rectangles. Unfortunately, this is not the case for other
polygons. Hence the tiling arrangement does not help us in finding Pythagorean
dissections of other polygons, even other regular polygons. This does not mean
however that we cannot find dissections for other polygons as we shall see in the
next section.
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Tiling arrangements for the A< s , | cC
Pythagorean  dissection  of ¢ P
rectangles. Note the different ¢ )
arrangement for long rectangles. L

PYTHAGOREAN DISSECTION OF EQUILATERAL TRIANGLES

Let us go back to Figure 2.1 which we drew at the beginning of this investigation.
The figure shows equilateral triangles drawn on the three sides of the right angle
triangle. We know that the sum of the areas of the equilateral triangles on the two
sides forming the right angle is equal to the area of the equilateral triangle on the
hypotenuse. Can we find a dissection of the two smaller equilateral triangles into
the equilateral triangle on the hypotenuse?

We made a brief remark that the tiling patterns and arrangements do not yield a
suitable dissection. We will leave it to you to check whether this is indeed true. A
simple and elegant dissection of the equilateral triangles was published by Alfred
Versady, a Hungarian, in 1989. Greg Frederickson, in his classic book on dissec-
tions, writes of this dissection: “it is humbling to wonder how this dissection was
discovered”. It is not always possible to follow a technique or a recipe or a thumb
rule to make discoveries in mathematics. There are innumerable instances of dis-
coveries which simply are brilliant and one fails to understand how the discoverer
found them. And here is another interesting fact: Versady is not a mathematician.
He is a technical draftsman and technical designer who lives in a small village
called Metten in Hungary. He has made several brilliant discoveries concerning
dissection problems.

Dissection problems are simple to understand and yet challenging and stimulating.
That perhaps explains why, in this area of mathematics, amateurs still continue to
compete with and often surpass professional mathematicians. Frederickson’s book
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mentions a number of these amateurs who have contributed to geometric dissec-
tion problems. Engineers, draftsmen, designers, architects and artists jostle with
mathematicians, physicists and computer scientists in the book. Dissection prob-
lems received repeated discussion in Martin Gardner’s famous column ‘Mathe-
matical games’ and became very popular. In the 1960s when Martin Gardner was
writing about dissection problems, the world’s leading expert on dissections was
Harry Lindgren. Lindgren started his career as an electrical engineering draftsman
and worked as a patent examiner of electrical specifications in Australia when he
became the world’s expert on dissections. Harry Lindgren wrote about the dis-

sections that he discovered in another classic Geometric Dissections published in
1964.

Let us study the Pythagorean dissection of equilateral triangles discovered by Ver-
sady. Figure 2.7 shows the three equilateral triangles of sides a, b and ¢. It is
convenient once again to refer to these triangles as the «, 3 and I'-triangles respec-
tively. The « and the 3 triangles are arranged edge to edge so that one of their
vertices coincides at B. The vertex of the I'-triangle coincides with another vertex
of the (-triangle at D. The top edge of the I'-triangle intersects an edge of the a-
triangle at J which is the mid-point of the side AC. To show that the dissection is
indeed correct we need to show that the pieces marked with the same numbers are
congruent to each other.

The pieces numbered 1 and 2 are inside the I'-triangle as well as inside the «
or (-triangle. Compare ADBG and ADKH in Figure 2.7. These triangles are
composed of the pieces numbered 3 and 4. /DBG and /DKH are both equal to
120°. /BDG is equal to /ZKDH since they are both equal to the difference of
60°and /NDK. The segments DB and DK are equal. Hence ADBG = ADKH.
By choosing the point M on DH such that DN = DM, we can ensure that the pairs
of pieces formed by the numbers 3 and 4 are pairs of congruent triangles.

It is easy to show that the two remaining pairs of triangles (numbered 5 and 6)
are pairs of similar triangles. (It is more difficult to show that they are congruent.)
In Figure 2.7 consider the triangles numbered 5, AJFL and AHCL. /F and /C
are each equal to 60°. The vertically opposite angles ZHLC and /JLF are equal.
So the two triangles are similar. By similar reasoning we can show that AIEG is
similar to AIAJ. These are the triangles numbered 6.

We know that the area of the ['-triangle is equal to the sum of the areas of the « and
B-triangles. The pieces marked 1 and 2 are common to the I' as well as the other
triangles. We have seen that the pieces marked 3 are congruent and hence equal
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Figure 2.7: Versady’s Pythagorean dissection of equilateral trian-
gles



in area. Similarly the pieces marked 4 are congruent and hence equal in area. It
follows that the total area of the pieces marked 5 and 6 in the [-triangle is equal
to the total area of the pieces marked 5 and 6 in the « and (3-triangles. We will use
this fact later on.

A
E E
J
Bv I's BW C
D F D
(a) (b) (c)

Figure 2.8: Rotating the I'-triangle

How do we show that the pieces marked 5 are congruent to each other? We will
show this indirectly. Let us keep the I'-triangle with one of its vertices coinciding
with D and one of its edges horizontal as in Figure 2.8(a). Now rotate the T'-
triangle anti-clockwise about the point D. The horizontal edge of the I triangle
rises up to meet the base of the a-triangle. As the rotation is increased a small
triangle, AJFL, begins to form over the edge AC as in Figure 2.8(b). Similarly
a triangle, AHLC, forms over edge DF. In order for these triangles to form we
need to show that DF is always greater than the distance DC. This in fact is true
whatever be the relative proportions of a and b. We will leave the proof of this to
you.

Compare the two triangles AJFL and AHCL. /F and /C are each equal to 60°.
The vertically opposite angles ZHLC and /JLF are equal. So the two triangles
are similar. As we increase the rotation the areas of these two similar triangles
change. Notice that in the beginning as the triangles are forming AJFL is bigger
in area than AHCL. But after some rotation just before the point F crosses AC,
AJFL is clearly smaller in area than AHCL. Since the rotation changes the areas
continuously, we can assume that there is at least one point of the rotation where
the areas of the triangles JFL. and HCL are equal. Let us find out how many such
points can be found.











































































